加速装置

钠离子电池行业研究产业化元年在即乘储能

发布时间:2025/1/17 11:32:30   

(报告出品方/作者:东亚前海证券,李子卓)

1.概述:二次电池新星、与锂电本同末异

1.1.钠电vs锂电:原理类似、性能差异

钠电池组成结构、工作原理与锂电池相似。钠电池是一种新型二次电池,其组成结构与锂电池相似,主要包括正极材料、负极材料、电解液和隔膜。钠电池主要通过Na+在电池正负极之间来回的脱出和嵌入来实现充放电过程。在充电时,Na+从正极材料脱出,经过电解液和隔膜嵌入到负极材料,此时,外电路中电子从负极流向正极。钠电池放电过程与充电过程相反。锂电池则是通过Li+在电池正负极之间来回的脱出和嵌入来实现上述过程,因此两者工作原理相似,均被称为“摇椅式电池”。

与锂电相似,按照封装方式钠电池可划分为圆柱、软包装和方形硬壳三类。钠电池封装方式也与锂电池类似,可划分为圆柱、软包装和方形硬壳三类。其中圆柱电池的封装材质为圆柱铝壳或钢壳,目前常见的圆柱锂电池型号包括、、等,不同型号的电池因其内部装配结构的不同在性能上有所差异;软包电池的封装材质为铝塑膜,其在安全性、重量、电池设计的灵活性等方面具有一定的优势,但其成本较高,且一致性较差;方形硬壳电池的封装材质为方形铝壳或钢壳,其具有比能量较高、重量较轻的特性,但其生产工艺难以统一,一般根据产品尺寸进行定制化生产。

由于钠和锂在物理化学性质上的差异,钠电池性能同锂电池也存在一定差异。钠电池在成本、低温性能、安全性方面优于锂电池。其中钠电池单位能量原料成本为0.29元/Wh,低于锂电池的0.43元/Wh;且其在-20℃下容量保持率大于88%,而锂电池小于70%。但钠电池在能量密度以及循环寿命方面低于锂电池。钠电池的质量能量密度、体积能量密度分别为~Wh/kg、~Wh/L,均低于锂电池。此外,钠电池的循环寿命大于次,而锂电池的循环寿命大于次。

1.2.组成:四大关键材料、发展趋势显现

1.2.1.正极:三大材料并驱、层状氧化物成熟

层状氧化物、聚阴离子和普鲁士蓝(白)为目前主要正极材料。电池正极材料一般需要具备比容量高、资源丰富、结构稳定以及工作电压高等特点,合适的正极材料可显著提高电池的比能量。目前钠电池正极材料主要包括过度金属氧化物、聚阴离子、普鲁士蓝(白),其中过度金属氧化物按照结构不同又可划分为层状氧化物和三维隧道氧化物,当钠含量较高时(x0.5),氧化物一般以层状结构为主。由于三维隧道氧化物材料存在首周充电比容量较低的问题,因此目前以层状氧化物为主。

层状氧化物技术较为成熟,具有比容量较高、倍率性能好等优点。钠电池正极材料层状氧化物与锂电池三元材料体系相似,因此二者生产路线较为类似。层状氧化物具有可逆比容量高、能量密度高、倍率性能高、技术易转化等优点,致使其成为目前主流的钠电池正极材料,生产技术较为成熟,但其仍存在容易吸湿、循环性能稍差等不足。

按照Na+的配位类型和氧的堆垛方式可将层状氧化物划分为O2、O3、P2、P3,其中O3和P2更为常见。O3过度金属一般以Fe、Mn、Ni为主,其电极材料比容量可达mA·h/g,与硬碳组成电芯的能量密度约为W·h/kg。P2的过度金属一般为Fe、Mn、Ni,具有较好的结构稳定性以及较高的容量保持率,其电极材料比容量约为mA·h/g,与硬碳组成电芯的能量密度约为W·h/kg。

聚阴离子具有较高的结构稳定性以及安全性。聚阴离子的特性与其组成结构相关。聚阴离子化合物组成单元一般包括四面体阴离子XO4-/XO4-衍生物和多面体MeOx,其中四面体阴离子可保证结构在金属氧化还原过程中的稳定性,且其内部的X-O键可提高晶格中氧的稳定性,进而确保材料具备较高的安全性。此外,钠电池聚阴离子型材料具有工作电压高、热稳定性好、循环好等优点,其不足之处在于可逆比容量低、部分含有毒元素等。

常见的聚阴离子材料包括NaFePO4、Na4Fe3(PO4)2P2O7、Na3V2(PO4)3、Na3V2(PO4)2F3等。NaFePO4为橄榄石型,可通过化学或者电化学转换法制成,其比容量约为mA·h/g,与硬碳组成电芯的能量密度约为W·h/kg,其在高温下结构不稳定。Na4Fe3(PO4)2P2O7采用焦磷酸根取代磷酸根,可通过固相法合成,具有较长的循环性能,其比容量约为mA·h/g,与硬碳组成电芯的能量密度约为W·h/kg。Na3V2(PO4)3和Na3V2(PO4)2F3均为NASICON结构,结构稳定性较高、循环稳定性可达几千次且易于合成,比容量均为mA·h/g,其中Na3V2(PO4)3与硬碳组成电芯的能量密度约为W·h/kg,Na3V2(PO4)2F3与硬碳组成电芯的能量密度约为W·h/kg,其不足之处在于采用了价格较高的V元素。

普鲁士蓝具有能量密度高、成本低等优势。普鲁士蓝具有较大的隧道结构,有助于钠电池在充放电过程中Na+的脱出和嵌入,其优势在于工作电压可调、可逆比容量高、能量密度高、合成温度低等,不足之处在于存在结晶水影响循环性能。根据《钠离子电池机遇与挑战》一文中分析,目前进行产业化验证的普鲁士白材料包括Na2FeFe(CN)6和Na2MnFe(CN)6,两者具有循环稳定性好、比容量高、成本低等优势,比容量均可达mA·h/g。其中Na2FeFe(CN)6与硬碳组成电芯的能量密度约为W·h/kg,Na2MnFe(CN)6与硬碳组成电芯的能量密度约为W·h/kg。

1.2.2.负极:无定形碳为主、硬碳趋势明显

负极材料是决定钠电池比能量的关键因素之一。正负极材料性能决定电池的比能量,因此合适的负极材料也有利于提高钠电池的比能量。依据锂电池负极材料的特性,得出具有应用前景的负极材料应具备以下特性。首先具备较高的储钠比容量;其次其脱嵌过程中结构变化要尽可能小,确保其具有良好的循环稳定性;然后负极材料应与电解液具备良好的兼容性,不发生副反应;之后负极材料应具备较高的离子迁移率、电子导电率、较好的化学稳定性、热力学稳定性;最后应具备环保性和经济性。

碳基材料、钛基化合物、合金材料是目前主要的负极材料。这些材料的储钠性能都表现良好,但非碳基材料在循环过程中均表现出体积膨胀、稳定性差、导电性差等问题,因此在实际中应用较少。而碳基材料具有研发技术成熟、来源广泛、价格低廉、结构多样等优点,故成为钠电池负极材料的首选,也是最有可能实现产业化并应用的材料。

碳基材料可划分为石墨类和无定型碳,以无定形碳为主。石墨类材料是一种具有规则层状结构的碳基材料,是锂电池的主要负极材料,其作用机理是通过锂离子的嵌入/脱出过程来实现储锂过程。但由于钠离子难以嵌入石墨层中与其形成稳定的插层化合物,导致其作为钠离子电池负极材料时储钠性能并不出色。无定形碳由于内部微晶结构的无序性和更大的层间距,更有利于钠离子的嵌入脱出,因此成为钠电池的首选负极材料。按照石墨化难易程度,无定形碳又可划分为软碳和硬碳。温度在0℃以上时可以石墨化的碳材料称为软碳,在0℃以上不能石墨化的碳材料为硬碳。硬碳内部的碳微晶排布比软碳更加的无序,并且含有微纳孔。软碳材料在0mA/g下循环圈后保持率接近%,在0mA/g电流下释放出mAh/g电容。硬碳材料在30mA/g电流下循环圈后保持mAh/g电容,在mA/g电流下释放出mAh/g电容量。

相较于软碳,硬碳具有较高的储钠容量。在高温下,软碳的内部碳层之间的距离以及微晶尺寸会发生更加明显、迅速的变化,导致其内部层间距下降,进而降低了它的储钠性能。硬碳即便经过高温处理,也难以出现石墨化的现象,因此表现出更强的储钠能力,用作负极可提高钠电池的能量密度。硬碳储钠机理主要有四种:“插层-填孔”机理、“吸附-插层”机理、“吸附-填孔”机理和“吸附-插层-吸附”机理。“插层-填孔”机理:钠离子嵌入平行排列的碳层的过程位于充放电曲线高电压段,随着嵌入离子的增加,电压逐渐降低。钠离子在纳米级石墨微晶乱层堆垛形成的微孔中的填充过程位于充放电曲线的水平段,电压无明显变化。“吸附-插层”机理:充放电曲线基本无水平阶段,斜坡区域容量呈现缓慢下降的趋势,表明斜坡区的储钠容量与钠离子在碳层缺陷位点处的吸附有关。“吸附-填孔”机理:该机理中,硬碳储钠过程不存在插层行为,钠离子在碳层表面、边缘或缺陷位置的吸附发生在充放电曲线的高电压区,钠离子在纳米孔隙中的填充发生在充放电曲线的低电压区。“吸附-插层-吸附”机理:钠离子在碳层缺陷部位的化学吸附产生1.0V-0.2V平台容量;钠离子在石墨烯片层间的嵌入产生0.2V-0.05V平台容量;硬碳中的孔隙表面对钠离子的吸附产生小于0.05V的平台容量。

1.2.3.电解液:溶剂接近锂电、溶质有所改变

钠电池电解液与锂电池相似,主要包括溶剂、溶质和添加剂:钠电池电解液溶剂主要包括碳酸酯类和醚类:碳酸酯类溶剂可划分为链状碳酸酯和环状碳酸酯,其中链状碳酸酯溶剂主要包括碳酸二甲酯(DMC)、碳酸甲乙酯(EMC)、碳酸乙烯酯(DEC);环状碳酸酯主要包括碳酸乙烯酯(EC)、碳酸丙烯酯(PC)。DMC具有粘度低、挥发性好、电化学稳定性好、介电常数较高的特点,成为主流的电解液溶剂。此外,EC在25℃下介电常数最高,达89.78,其一般与其他有机溶剂搭配使用,有利于提高电解液的熔点、沸点、粘度及离子导电率。酶类溶剂通常可划分为四类:1,3-二氧戊环(DOL)、乙二醇二甲醚(DME)、二乙二醇二甲醚(Diglyme)和四乙二醇二甲醚(Triglyme)。其中DME和Diglyme的沸点和燃点相较DOL、Triglyme更高,介电常数也更高,因此它们具有更加优越的物化性能。在钠电池中,DME与Diglyme可产生溶剂化钠共插层效应以及Na+优异的扩散动力学效应,因此更适合应用于钠电池中。

钠电池中采用钠盐作为溶质,以六氟磷酸钠为主。钠盐根据阴离子的不同可分为含氟钠盐、含硼钠盐以及其他钠盐三类。其中含氟钠盐包括NaPF6、NaOTF、NaFSI、NaTFSI等;含硼钠盐包括NaBF4、NaBOB、NaDFOB等。目前钠电池电解液中通常采用的钠盐为NaPF6,其基于LiPF6生产工艺制成,重置成本较低,具备良好的导电性,其导电率为7.98mS/cm,是目前的主流钠盐。

此外,钠电池隔膜基本沿用锂电,主要包括PP膜和PE膜。良好的隔膜应具有丰富的孔洞结构、均匀的孔径分布、合适的厚度、达标的机械强度、合适的孔隙度、良好的热传导性和碘化学稳定性,有助于促进钠离子传导。PP膜、PE膜由于耐腐蚀性强、强度高等优点,被广泛应用锂电池中。由于钠电池技术与锂电池一脉相承,所以目前钠电池基本沿用锂电池隔膜。

1.2.4.集流体:两极均用铝箔、成本优势明显

集流体具备汇集电流的作用,与电池能量密度密切相关。集流体实质上是一种存在于锂离子电池的非活性材料,其主要用于汇集电池活性物质产生的电流,有利于对外形成较大的电流输出。集流体的厚度与电池的能量密度密切相关,集流体越薄,电池的能量密度越高。集流体是目前钠电池中不可或缺的组成部分,一个良好的集流体应该具有优良的电化学稳定性、高电导率、低密度以及适当的机械水平等。

钠电池正负极集流体均可采用铝箔,成本优势显著。由于钠离子较难与铝箔发生反应生成合金,且铝箔具有优良的电化学稳定性、热稳定性、导电性、机械性等特性,因此钠电池正负极集流体均可采用铝箔。铝箔价格远低于铜箔价格,具有显著的成本优势,有利于进一步降低钠电池材料成本。

1.3.产业链:工艺类似锂电、应用有望互补

钠电池生产工艺路线与锂电池相似,设备兼容性较大。钠电池技术路线基于锂电池,两者生产工艺基本类似。钠电池生产工艺可划分为三个部分:前端电极制造、后端装配、化成分选。其中前端电极制造工序主要包括混料、涂布、辊压、模切等;后端装配工序主要包括叠片、焊接、真空干燥、注液等;化成分选工序主要包括预封、化成、二封、分容等。

钠电池在应用领域有望与锂电池互补。由于钠电池工作原理、组成结构与锂电池相似,因此其具备与锂电池相同的产业位置。钠电池的上游包括正极材料、负极材料、电解液和隔膜,其正负极材料与锂电池有所区别。钠电池凭借其自身的特性可应用于储能领域、两轮电动车以及低速电动车领域,与锂电池在应用领域内形成互补。

1.4.经济性:低成本+高性能,经济效益显著

锂资源的稀缺性导致碳酸锂价格高企。锂属于稀有金属,根据中科海钠

转载请注明:http://www.aideyishus.com/lkjg/7693.html

------分隔线----------------------------